Доказательство формулы бинома Ньютона

Утверждение теоремы

Согласно теореме, можно разложить любую степень x + y в сумму вида (x + y)n = (nₒ) x n y + (n1) x n — 1 y 1 + (n2) x n — 2 y 2 + ··· + (n n — 1) x1y n — 1 + (n n) x1y n — 1+ (n n) xy n , где каждый (nk) является положительным целым числом, известным как коэффициент бинома.

Когда показатель степени равен нулю, соответствующее выражение степени принимается равным 1 и этот мультипликативный фактор часто исключается из формулы. Нередко можно видеть правую сторону уравнения, записанную в виде (nₒ) x n + ···. Эта формула также называется биноминальным тождеством.

Наиболее простой пример формулы бинома Ньютона — решение для квадрата из х + у, например, (x + y)2 = x2 + 2xy + y2. Биномиальные коэффициенты 1, 2, 1, фигурирующие в этом расширении, соответствуют второму ряду треугольника Паскаля. Следует обратить внимание на общепринятые нормы, где верхняя «1» треугольника считается строкой 0.

Коэффициенты более высоких степеней x + y соответствуют нижним строкам паскалевского треугольника. Из расчётов можно наблюдать несколько закономерностей. В общем случае для разложения (x + y) n:

  • степени x уменьшаются на 1 в каждом члене, начинаясь с n до достижения 0 (при x , равном 1);
  • y начинаются с 0 и увеличиваются на 1 (пока не достигнут n степени);
  • число слагаемых в разложении перед объединением одинаковых слагаемых является суммой коэффициентов и равно 2n;
  • после объединения одинаковых слагаемых в разложении получится n + 1.

Теорема может быть применена к степеням любого бинома.

Видео

Проверка в действии

Начать лучше с решения простой задачи, которую учитель покажет классу на уроке алгебры. Например, нужно расширить (2x-3) ³. Это было бы не слишком трудно сделать, воспользовавшись онлайн-калькулятором. Но нужно использовать бином, когда придётся столкнуться с более крупными расширениями, такими как двучлены, возведённые в 4, 5, 6, … степени.

Для начала нужно определить два члена из бинома (положения x и y формулы) и степени (буква n), до которой нужно расширить бином. Например, чтобы расширить (2x-3) ³, два члена составляют 2x и -3, а значение мощности (или n) равно 3. Следует отметить, что всякий раз, когда в биноме есть знак вычитания, очень важно помнить, что минус следует использовать только в качестве отрицательного символа в сопутствующем термине.

Замечательная вещь в теореме о биноме — это то, что она позволяет найти расширенный многочлен без умножения множества биномов вместе. Довольно интересное свойство. Оказывается, что число слагаемых в искомом расширенном полиноме всегда будет на единицу больше, чем сила, которую расширяют. Это означает, что необходимо создавать многочлен с четырьмя членами, так как мощность в этом примере равна 3.

Каждый член будет иметь (2x) и (-3), а также формулу «n выбирает k», где n = 3. Нужно записать это 4 раза, по одному на каждый член, оставив значение k в «n выбирает k». На этом этапе подсчёта значения степеней не заполняются.

Далее нужно заполнить k-значения и полномочия. Здесь можно следовать формуле суммирования, увеличивая мощность для каждого члена. Но довольно просто следовать шаблонам. Значения k в «n выбирает k» начинаются с k = 0 и увеличиваются на 1 в каждом члене. Последний член должен заканчиваться на n, равный k, в этом случае n = 3 и k = 3. Затем нужно добавить полномочия на (2x) и (-3).

Включение (2x) начнётся с n-значения, в этом случае — 3, и будет уменьшаться на 1 для каждого слагаемого, пока не доберётся до нуля. Включение (-3) будет начинаться с нуля и увеличиваться на единицу каждый раз, пока не доберётся до n или 3 в этой задаче. Итак, половина дела сделана: (³ₒ)(2x)³‾⁰˭³ (-3)⁰ + (³1)(2x) 3-1=2 (-3)1 + (³2)(2x) 3-2=1 (-3)2 + (³3)(2x) 3-3=0 (-3)3.

Поскольку любое значение, возведённое в ноль, равно 1, можно упростить слагаемые с нулевыми степенями. Далее, двигаясь вперёд и применяя силы, целесообразно упростить все возможные сочетания.

Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля

Представление биномиальных коэффициентов для различных n осуществляется при помощи таблицы, которая имеет название арифметического треугольника Паскаля. Общий вид таблицы:

Показатель степени Биноминальные коэффициенты
C 0 0
1 C 1 0 C 1 1
2 C 2 0 C 2 1 C 2 2
3 C 3 0 C 3 1 C 3 2 C 3 3
n C n 0 C n 1 C n n – 1 C n n

При натуральных n такой треугольник Паскаля состоит из значений коэффициентов бинома:

Показатель степени Биноминальные коэффициенты
1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
n C n 0 C n 1 C n n – 1 C n n

Боковые стороны треугольника имеют значение единиц. Внутри располагаются числа, которые получаются при сложении двух чисел соседних сторон. Значения, которые выделены красным, получают как сумму четверки, а синим – шестерки. Правило применимо для всех внутренних чисел, которые входят в состав треугольника. Свойства коэффициентов объясняются при помощи бинома Ньютона.

Доказательство формул сокращенного умножения

Напомним, что разность квадратов двух чисел a и b равна произведению их разности и их суммы: a2 — b2 = (a — b) * (a + b).

Иначе говоря, произведение суммы a и b на их разность равна разности их квадратов: (a — b) * (a + b) = a2 — b2.

Важно знать, что разность квадратов не равна квадрату разности: a2 — b2 ≠ (a — b)2.

Докажем, что a2 — b2 = (a — b) * (a + b).

Поехали:

  1. Используя искусственный метод, прибавим и отнимем одно и тоже a * b.

    + a * b — a * b = 0

    a2 — b2 = a2 — b2 + ab — ab

  1. Сгруппируем иначе: a2 — b2 + a * b — a * b = a2 — a * b + a * b — b2
  2. Продолжим группировать: a2 — a * b — b2 +a * b = (a2 — a * b) + (a * b — b2)
  3. Вынесем общие множители за скобки:

    (a2 — a * b) + (a * b — b2) = a *(a — b) + b *(a — b)

  1. Вынесем за скобки (a — b). a * (a — b) + b * (a — b) = (a — b) * (a + b)
  2. Результат доказательства: a2 — b2 = (a — b) * (a + b)
  3. Для того, чтобы доказать в обратную сторону: (a — b) * (a + b) = a2 — b2, нужно раскрыть скобки: (a — b) * (a + b) = a * a + a * b — b * a — b * b = a2 — b2.

Остальные ФСУ можно доказать аналогичным методом.

Бином Ньютона — применение при решении примеров и задач

Для полного понятия использования формулы рассмотрим примеры.

Пример 1

Разложить выражение (a+b)5, используя формулу бинома Ньютона. Решение По треугольнику Паскаля с пятой степенью видно, что биноминальные коэффициенты – это 1, 5, 10, 10, 5, 1. То есть, получаем, что a+b5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 является искомым разложением. Ответ: a+b5=a5+5a4b+10a3b2+10a2b3+5ab4+b5

Пример 2

Найти коэффициенты бинома Ньютона для шестого члена разложения выражения вида a+b10. Решение По условию имеем, что n=10, k=6-1=5. Тогда можно перейти к вычислению биномиального коэффициента: Cnk=C105=(10)!(5)!·10-5!=(10)!(5)!·(5)!==10·9·8·7·6(5)!=10·9·8·7·61·2·3·4·5=252 Ответ: Cnk=C105=252

Ниже приведен пример, где используется бином для доказательства делимости выражения с заданным числом.

Пример 3

Доказать, что значение выражения 5n+28·n-1, при n, являющимся натуральным числом, делится на 16 без остатка. Решение Необходимо представить выражение в виде 5n=4+1n и воспользоваться биномом Ньютона. Тогда получим, что 5n+28·n-1=4+1n+28·n-1==Cn·4n+Cn1·4n-1·1+…+Cnn-2·42·1n-2+Cnn-1·4·1n-1+Cnn·1n+28·n-1==4n+Cn1·4n-1+…+Cnn-2·42+n·4+1+28·n-1==4n+Cn1·4n-1+…+Cnn-2·42+32·n==16·(4n-2+Cn1·4n-3+…+Cnn-2+2·n) Ответ: Исходя из полученного выражения, видно, что исходное выражение делится на 16.

Всё ещё сложно? Наши эксперты помогут разобраться Все услуги

Теги